منابع مشابه
Une courte démonstration de la formule de Campbell-Hausdorff
We give a simple proof of an algorithm for computing the terms of the Campbell-Hausdorff formula. 2000 AMS Subject Classification: Primary: 22E15; Secondary: 22E60 Soient G un groupe de Lie et g = T1G son algèbre de Lie, vue comme l’espace tangent à G en l’élément neutre 1. Alors il existe un voisinage V de 0 dans g et un voisinage U de 1 dans G tels que la restriction de l’application exponent...
متن کاملUne formule analytique pour les polynômes de Macdonald
We give the explicit analytic development of any Jack or Macdonald polynomial in terms of elementary (resp. modified complete) symmetric functions. These two developments are obtained by inverting the Pieri formula. Résumé Nous donnons le développement analytique explicite de tout polynôme de Jack ou de Macdonald sur les fonctions symétriques élémentaires (resp. complètes modifiées). Nous obten...
متن کاملRunge - Kutta Methods page RK 1 Runge - Kutta Methods
Literature For a great deal of information on Runge-Kutta methods consult J.C. Butcher, Numerical Methods for Ordinary Differential Equations, second edition, Wiley and Sons, 2008, ISBN 9780470723357. That book also has a good introduction to linear multistep methods. In these notes we refer to this books simply as Butcher. The notes were written independently of the book which accounts for som...
متن کاملAccelerated Runge-Kutta Methods
Standard Runge-Kutta methods are explicit, one-step, and generally constant step-size numerical integrators for the solution of initial value problems. Such integration schemes of orders 3, 4, and 5 require 3, 4, and 6 function evaluations per time step of integration, respectively. In this paper, we propose a set of simple, explicit, and constant step-size Accerelated-Runge-Kutta methods that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revue française d'informatique et de recherche opérationnelle. Série rouge
سال: 1970
ISSN: 0373-8000
DOI: 10.1051/m2an/197004r100031